31 research outputs found

    Liquid Biopsy: A Step Closer to Transform Diagnosis, Prognosis and Future of Cancer Treatments

    Get PDF
    Over the past decade, invasive techniques for diagnosing and monitoring cancers are slowly being replaced by non-invasive methods such as liquid biopsy. Liquid biopsies have drastically revolutionized the field of clinical oncology, offering ease in tumor sampling, continuous monitoring by repeated sampling, devising personalized therapeutic regimens, and screening for therapeutic resistance. Liquid biopsies consist of isolating tumor-derived entities like circulating tumor cells, circulating tumor DNA, tumor extracellular vesicles, etc., present in the body fluids of patients with cancer, followed by an analysis of genomic and proteomic data contained within them. Methods for isolation and analysis of liquid biopsies have rapidly evolved over the past few years as described in the review, thus providing greater details about tumor characteristics such as tumor progression, tumor staging, heterogeneity, gene mutations, and clonal evolution, etc. Liquid biopsies from cancer patients have opened up newer avenues in detection and continuous monitoring, treatment based on precision medicine, and screening of markers for therapeutic resistance. Though the technology of liquid biopsies is still evolving, its non-invasive nature promises to open new eras in clinical oncology. The purpose of this review is to provide an overview of the current methodologies involved in liquid biopsies and their application in isolating tumor markers for detection, prognosis, and monitoring cancer treatment outcomes

    Association of genes with phenotype in autism spectrum disorder.

    Get PDF
    Autism spectrum disorder (ASD) is a genetic heterogeneous neurodevelopmental disorder that is characterized by impairments in social interaction and speech development and is accompanied by stereotypical behaviors such as body rocking, hand flapping, spinning objects, sniffing and restricted behaviors. The considerable significance of the genetics associated with autism has led to the identification of many risk genes for ASD used for the probing of ASD specificity and shared cognitive features over the past few decades. Identification of ASD risk genes helps to unravel various genetic variants and signaling pathways which are involved in ASD. This review highlights the role of ASD risk genes in gene transcription and translation regulation processes, as well as neuronal activity modulation, synaptic plasticity, disrupted key biological signaling pathways, and the novel candidate genes that play a significant role in the pathophysiology of ASD. The current emphasis on autism spectrum disorders has generated new opportunities in the field of neuroscience, and further advancements in the identification of different biomarkers, risk genes, and genetic pathways can help in the early diagnosis and development of new clinical and pharmacological treatments for ASD

    Genetics of structural and functional brain changes in autism spectrum disorder.

    Get PDF
    Autism spectrum disorder (ASD) is a neurological and developmental disorder characterized by social impairment and restricted interactive and communicative behaviors. It may occur as an isolated disorder or in the context of other neurological, psychiatric, developmental, and genetic disorders. Due to rapid developments in genomics and imaging technologies, imaging genetics studies of ASD have evolved in the last few years. Increased risk for ASD diagnosis is found to be related to many specific single-nucleotide polymorphisms, and the study of genetic mechanisms and noninvasive imaging has opened various approaches that can help diagnose ASD at the nascent level. Identifying risk genes related to structural and functional changes in the brain of ASD patients provide a better understanding of the disease's neuropsychiatry and can help identify targets for therapeutic intervention that could be useful for the clinical management of ASD patients.This study was supported by a PI grant from Sidra Medicine (5071012001) to M.H. A.A.B. is supported by Sidra Medicine internal grant (5011041002)

    Role of NAD+ in regulating cellular and metabolic signaling pathways

    Get PDF
    BackgroundNicotinamide adenine dinucleotide (NAD+), a critical coenzyme present in every living cell, is involved in a myriad of metabolic processes associated with cellular bioenergetics. For this reason, NAD+ is often studied in the context of aging, cancer, and neurodegenerative and metabolic disorders. Scope of reviewCellular NAD+ depletion is associated with compromised adaptive cellular stress responses, impaired neuronal plasticity, impaired DNA repair, and cellular senescence. Increasing evidence has shown the efficacy of boosting NAD+ levels using NAD+ precursors in various diseases. This review provides a comprehensive understanding into the role of NAD+ in aging and other pathologies and discusses potential therapeutic targets. Major conclusionsAn alteration in the NAD+/NADH ratio or the NAD+ pool size can lead to derailment of the biological system and contribute to various neurodegenerative disorders, aging, and tumorigenesis. Due to the varied distribution of NAD+/NADH in different locations within cells, the direct role of impaired NAD+-dependent processes in humans remains unestablished. In this regard, longitudinal studies are needed to quantify NAD+ and its related metabolites. Future research should focus on measuring the fluxes through pathways associated with NAD+ synthesis and degradation

    Chemokine-cytokine networks in the head and neck tumor microenvironment

    Get PDF
    Head and neck squamous cell carcinomas (HNSCCs) are aggressive diseases with a dismal patient prognosis. Despite significant advances in treatment modalities, the five-year survival rate in patients with HNSCC has improved marginally and therefore warrants a comprehensive understanding of the HNSCC biology. Alterations in the cellular and non-cellular components of the HNSCC tumor micro-environment (TME) play a critical role in regulating many hallmarks of cancer development including evasion of apoptosis, activation of invasion, metastasis, angiogenesis, response to therapy, immune escape mechanisms, deregulation of energetics, and therefore the development of an overall aggressive HNSCC phenotype. Cytokines and chemokines are small secretory proteins produced by neoplastic or stromal cells, controlling complex and dynamic cell–cell interactions in the TME to regulate many cancer hallmarks. This review summarizes the current understanding of the complex cytokine/chemokine networks in the HNSCC TME, their role in activating diverse signaling pathways and promoting tumor progression, metastasis, and therapeutic resistance development.This study was supported by Ramalingaswami Fellowship (Grant number: D.O.NO.BT/HRD/35/02/2006) from the Department of Biotechnology, Govt. of India, New Delhi to Muzafar A. Macha. Sidra Medicine Precision Program funded this research to Mohammad Haris (5081012001, 5081012001) and Ajaz A. Bhat (5081012003)

    Genetic and Neuroimaging Approaches to Understanding Post-Traumatic Stress Disorder.

    Get PDF
    Post-traumatic stress disorder (PTSD) is a highly disabling condition, increasingly recognized as both a disorder of mental health and social burden, but also as an anxiety disorder characterized by fear, stress, and negative alterations in mood. PTSD is associated with structural, metabolic, and molecular changes in several brain regions and the neural circuitry. Brain areas implicated in the traumatic stress response include the amygdala, hippocampus, and prefrontal cortex, which play an essential role in memory function. Abnormalities in these brain areas are hypothesized to underlie symptoms of PTSD and other stress-related psychiatric disorders. Conventional methods of studying PTSD have proven to be insufficient for diagnosis, measurement of treatment efficacy, and monitoring disease progression, and currently, there is no diagnostic biomarker available for PTSD. A deep understanding of cutting-edge neuroimaging genetic approaches is necessary for the development of novel therapeutics and biomarkers to better diagnose and treat the disorder. A current goal is to understand the gene pathways that are associated with PTSD, and how those genes act on the fear/stress circuitry to mediate risk vs. resilience for PTSD. This review article explains the rationale and practical utility of neuroimaging genetics in PTSD and how the resulting information can aid the diagnosis and clinical management of patients with PTSD.Sidra Medicine funded this research to Mohammad Haris (5071012001) and Ajaz A. Bhat (5011041002)

    Role of non-coding RNA networks in leukemia progression, metastasis and drug resistance.

    Get PDF
    Early-stage detection of leukemia is a critical determinant for successful treatment of the disease and can increase the survival rate of leukemia patients. The factors limiting the current screening approaches to leukemia include low sensitivity and specificity, high costs, and a low participation rate. An approach based on novel and innovative biomarkers with high accuracy from peripheral blood offers a comfortable and appealing alternative to patients, potentially leading to a higher participation rate.Recently, non-coding RNAs due to their involvement in vital oncogenic processes such as differentiation, proliferation, migration, angiogenesis and apoptosis have attracted much attention as potential diagnostic and prognostic biomarkers in leukemia. Emerging lines of evidence have shown that the mutational spectrum and dysregulated expression of non-coding RNA genes are closely associated with the development and progression of various cancers, including leukemia. In this review, we highlight the expression and functional roles of different types of non-coding RNAs in leukemia and discuss their potential clinical applications as diagnostic or prognostic biomarkers and therapeutic targets

    Cytokine-chemokine network driven metastasis in esophageal cancer; promising avenue for targeted therapy

    Get PDF
    Esophageal cancer (EC) is a disease often marked by aggressive growth and poor prognosis. Lack of targeted therapies, resistance to chemoradiation therapy, and distant metastases among patients with advanced disease account for the high mortality rate. The tumor microenvironment (TME) contains several cell types, including fibroblasts, immune cells, adipocytes, stromal proteins, and growth factors, which play a significant role in supporting the growth and aggressive behavior of cancer cells. The complex and dynamic interactions of the secreted cytokines, chemokines, growth factors, and their receptors mediate chronic inflammation and immunosuppressive TME favoring tumor progression, metastasis, and decreased response to therapy. The molecular changes in the TME are used as biological markers for diagnosis, prognosis, and response to treatment in patients. This review highlighted the novel insights into the understanding and functional impact of deregulated cytokines and chemokines in imparting aggressive EC, stressing the nature and therapeutic consequences of the cytokine-chemokine network. We also discuss cytokine-chemokine oncogenic potential by contributing to the Epithelial-Mesenchymal Transition (EMT), angiogenesis, immunosuppression, metastatic niche, and therapeutic resistance development. In addition, it discusses the wide range of changes and intracellular signaling pathways that occur in the TME. Overall, this is a relatively unexplored field that could provide crucial insights into tumor immunology and encourage the effective application of modulatory cytokine-chemokine therapy to EC.This study was supported by a PI grant from Sidra Medicine (5071012001) to Mohammad Haris. Ajaz A. Bhat is supported by Sidra Medicine internal grant (5011041002) and Ramalinga swami (Grant number: D.O.NO.BT/HRD/35/02/2006) Fellowship to Muzafar A. Macha and Nissar A. Wani by Department of Biotechnology (DBT), Govt. of India, New Delhi. Shahab Uddin is supported by Medical Research Centre grants (grant# 16102/6, #16354/16)

    Claudin-1, A Double-Edged Sword in Cancer.

    Get PDF
    Claudins, a group of membrane proteins involved in the formation of tight junctions, are mainly found in endothelial or epithelial cells. These proteins have attracted much attention in recent years and have been implicated and studied in a multitude of diseases. Claudins not only regulate paracellular transepithelial/transendothelial transport but are also critical for cell growth and differentiation. Not only tissue-specific but the differential expression in malignant tumors is also the focus of claudin-related research. In addition to up- or down-regulation, claudin proteins also undergo delocalization, which plays a vital role in tumor invasion and aggressiveness. Claudin (CLDN)-1 is the most-studied claudin in cancers and to date, its role as either a tumor promoter or suppressor (or both) is not established. In some cancers, lower expression of CLDN-1 is shown to be associated with cancer progression and invasion, while in others, loss of CLDN-1 improves the patient survival. Another topic of discussion regarding the significance of CLDN-1 is its localization (nuclear or cytoplasmic vs perijunctional) in diseased states. This article reviews the evidence regarding CLDN-1 in cancers either as a tumor promoter or suppressor from the literature and we also review the literature regarding the pattern of CLDN-1 distribution in different cancers, focusing on whether this localization is associated with tumor aggressiveness. Furthermore, we utilized expression data from The Cancer Genome Atlas (TCGA) to investigate the association between CLDN-1 expression and overall survival (OS) in different cancer types. We also used TCGA data to compare CLDN-1 expression in normal and tumor tissues. Additionally, a pathway interaction analysis was performed to investigate the interaction of CLDN-1 with other proteins and as a future therapeutic target
    corecore